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Dyslexia is one of the most common learning disabilities, yet its

brain basis and core causes are not yet fully understood.

Neuroimaging methods, including structural and functional

magnetic resonance imaging, diffusion tensor imaging, and

electrophysiology, have significantly contributed to knowledge

about the neurobiology of dyslexia. Recent studies have

discovered brain differences before formal instruction that

likely encourage or discourage learning to read effectively,

distinguished between brain differences that likely reflect the

etiology of dyslexia versus brain differences that are the

consequences of variation in reading experience, and identified

distinct neural networks associated with specific psychological

factors that are associated with dyslexia.
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Introduction
Developmental dyslexia, an unexplained difficulty in

word reading accuracy and/or fluency, affects 5–12% of

children [1,2]. Dyslexia is associated with many undesir-

able outcomes, including reduced educational attainment

and academic self-esteem [3]. Furthermore, children with

dyslexia tend to read far less outside of school than their

peers [4], resulting in a widening gap in reading skills.

Over the past 15 years, neuroimaging has made visible

and quantifiable the brain differences that are associated

with dyslexia; here, we review progress in the past few

years in understanding the biological basis of dyslexia at a

neural systems level.

Reading is a complex and slowly learned skill requiring

the integration of multiple visual, linguistic, cognitive,

and attentional processes. Neuroimaging methods in-

cluding functional magnetic resonance imaging (fMRI),
www.sciencedirect.com 
electroencephalography (EEG, and event-related poten-

tials or ERPs), and magnetoencephalography (MEG), have

revealed the brain regions most consistently involved in

single word reading. In typically reading adults, these

regions are lateralized to the language-dominant left hemi-

sphere, and include inferior frontal, superior and middle

temporal, and temporo-parietal regions [5]. In addition,

experienced readers recruit an area of the left fusiform

gyrus, termed the visual word form area (VWFA), which

becomes preferentially engaged for orthographic (print)

processing with reading experience [6,7,8�]. This reading

network(Figure1) develops overyears aschildrengainboth

specific reading skills and other abilities relevant to reading

(e.g., [9]). White-matter pathways that connect the com-

ponents of the reading network can be quantified in size and

strength by diffusion tensor imaging (DTI). Major tracts

involved in reading include the left arcuate/superior longi-

tudinal fasciculus, which connects frontal and temporal

language regions, the inferior longitudinal fasciculus, which

connects occipital and temporal lobes, and the corona

radiata, which connects cortex to subcortical structures [10].

Psychological bases of dyslexia
Because reading involves multiple linguistic, visual, and

attentional processes, it is probable that variable patterns

of weakness may contribute to reading difficulty across

children. Although it is unlikely that there is a single

causal mechanism of dyslexia, some frequent likely

causes have been identified (Table 1). The best under-

stood cause for dyslexia is a weakness in phonological

awareness (PA) for spoken (auditory) language that pre-

dicts and accompanies dyslexia [11]. Whereas learning a

spoken language happens almost effortlessly, learning to

read requires explicit knowledge and practice. Children

must first become aware of the phonological structure of

words, so that they can map those units of sound onto

their corresponding printed letters.

A second psychological weakness associated with dyslexia

relates to rapid automatized naming or RAN (Table 1).

Slowness in naming may reflect difficulty in the integ-

ration of cognitive and linguistic processes involved in

fluent reading [12]. Often, children who are especially

poor readers have weaknesses in both PA and RAN [13],

but some children exhibit only one of these weaknesses.

A third category of potential causal explanations for

dyslexia relates to basic perceptual processes that may

underlie the more proximal PA or RAN weaknesses, such

as temporal sampling or processing [14–16], visual–spatial

attention [17], or perceptual learning deficits [18]. These

explanations are more mechanistic, but perhaps because
Current Opinion in Neurobiology 2015, 30:73–78

http://crossmark.crossref.org/dialog/?doi=10.1016/j.conb.2014.09.007&domain=pdf
mailto:esn@mit.edu
http://dx.doi.org/10.1016/j.conb.2014.09.007
http://www.sciencedirect.com/science/journal/09594388


74 Neuropsychiatry

Figure 1
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Schematic of the aspects of the reading brain in the left hemisphere. The inferior frontal gyrus (yellow) and the inferior parietal area (blue) are connected

by the arcuate fasciculus (green). The fusiform gyrus, which includes the visual word form area, is in red. These regions are the most commonly found

to be atypical in function or structure in dyslexia.
they are more distal from reading per se, they are also

more debated.

Functional and structural brain differences in
dyslexia
Meta-analyses of primary research findings have identified

broad patterns of functional and structural differences

between typical and dyslexic readers. The most common
Table 1

Key constructs in reading and potential deficits in dyslexia

Construct Definition 

Phonological

awareness (PA)

Knowledge of, and ability to

manipulate, the sound

structure of words

- S

- W

so

- N

wi

Rapid automatized

naming (RAN)

Speed with which a series

of familiar stimuli can be

named aloud, reflecting

efficient visual–verbal

connections

Na

a 1

rep

let

Reading fluency Ability to read single words

and connected text with

sufficient accuracy and

speed so as to support

efficient comprehension

- R

wo

qu

po

- R

ac

inc
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functional brain differences, in children and adults, are

reduced activations (hypoactivations) in left temporal,

parietal, and fusiform (VWFA) regions [19–22]. In most

cases, these hypoactivations arise from comparisons be-

tween two tasks or conditions, and thus reflect a lack of

differential sensitivity to reading demands rather than a

broader dysfunction of those brain regions. Increased

activations in dyslexia are sometimes, but not consistently,
Example tasks Example standardized

assessment

ay game without the /g/

hat word do these

unds make? /s/ - /i/ - /t/

ame a word that rhymes

th star

- Comprehensive Test of

Phonological Processing

(CTOPP-2) [64]

- Phonological Awareness

Test (PAT-2) [65]

me, as quickly as possible,

0 � 5 array of five randomly

eated objects, colors,

ters, or numbers

- Rapid Automatized

Naming–Rapid Alternating

Stimulus Tests (RAN-RAS) [66]

ead aloud a list of common

rds or pseudowords as

ickly and accurately as

ssible

ead aloud, quickly and

curately, paragraphs of

reasing complexity

- Test of Word Reading

Efficiency (TOWRE-2) [67]

- Gray Oral Reading Test

(GORT-5) [68]
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observed in left inferior frontal and right-hemisphere

regions. Variability across these findings may reflect differ-

ences in reading tasks, ages of participants, diversity among

dyslexic groups, and other factors. Additionally, structural

gray matter differences in dyslexia tend to co-localize with

regions that show functional differences [23], but are also

observedinthecerebellum,particularly in lobuleVI[24,25].

DTI studies often find reduced organization or volume in

the left superior longitudinal fasciculus, including the arc-

uate fasciculus, and corona radiata fibers [26].

Because most neuroimaging studies of dyslexia have been

conducted with children or adults who have had years of

reading difficulty, it has been impossible to determine

whether the brain differences are associated with the

underlying neurobiological etiology of dyslexia, or are

instead the consequence of years of altered and often

vastly reduced reading experience (including compensa-

tory alterations in reading networks). One approach to

dissociating the cause and consequence of dyslexia in the

brain has been to compare dyslexic children not only to

age-matched typically reading children, but also to ‘abil-

ity-matched’ children who are years younger than the

dyslexic children but read at the same level. Ability-

matched children are conceptualized as having approxi-

mately the same amount of reading experience as older

dyslexic children. In one such study, dyslexic children

exhibited reduced left parietal and occipito-temporal

activations relative to both age-matched children and

ability-matched children, suggesting that these hypoac-

tivations were related to the cause of dyslexia (in contrast,

left prefrontal activations tracked ability level) [27].

A similar design challenged another idea about dyslexia,

the magnocellular hypothesis of dyslexia. Previously,

postmortem evidence from individuals with dyslexia

revealed smaller magnocellular neurons in the lateral

geniculate body [28], part of the visual pathway that is

associated with motion perception. Accordingly, reduced

activation for moving gratings in area MT, the cortical

region most associated with motion perception, was found

in adults with dyslexia [29]. When, however, children

with dyslexia were examined, their MT activations were

equivalent to ability-matched younger children,

suggesting that the MT hypoactivation in dyslexia

reflected reading experience [30��]. This conclusion

was further supported by evidence that remediation of

the reading difficulty also enhanced MT activations in

children with dyslexia [30��]. These findings suggest that

reduced MT activation for visual motion in dyslexia is a

consequence, not a cause, of dyslexia. Similarly, many

structural brain differences in dyslexia among age-

matched groups were eliminated when a group with

dyslexia was compared to ability-matched children [31�].

Another strategy for identifying brain differences that

underlie dyslexia has been the study of pre-reading
www.sciencedirect.com 
children, typically in kindergarten, for whom brain differ-

ences cannot be the consequence of altered reading experi-

ence. Although pre-reading children cannot have a formal

diagnosis of dyslexia, children can be identified as at-risk

for dyslexia because of either a family history of dyslexia,

which increases their risk of dyslexia by four times or more

[32], or low performance on tests of pre-reading skills that

tend to predict future reading difficulty (e.g., PA or RAN).

Often, these children are followed longitudinally to deter-

mine which at-risk children actually progress to dyslexia.

Several neuroimaging studies have found brain differ-

ences preceding formal reading instruction in pre-reading

children that resemble those observed in older children

and adults. ERP studies of the mismatch negativity

(MMN), an automatic response to an oddball auditory

stimulus that is reduced in adults with dyslexia, have

observed differences between infants with versus without

a family history of dyslexia [33], and infants who do or do

not develop dyslexia [34,35]. Thus, the MMN may be a

promising early endophenotype of dyslexia [36�].

In MRI, pre-reading kindergartners with familial risk for

dyslexia exhibited reduced bilateral occipitotemporal and

left temporo-parietal activations for PA [37��] and also

bilaterally reduced gray matter volumes in similar posterior

cortical regions [38]. Decreased gray-matter volumes in

prefrontal and parieto-temporal regions were also found in

5- and 6-year-olds with maternal histories of reading diffi-

culty [39]. In a heterogeneous sample of kindergartners,

pre-reading children exhibited a positive correlation be-

tween measures of PA andboth thesizeandmicrostructural

white-matterorganizationof the leftarcuate fasciculus [40].

Although it is not yet known which of these children will

develop dyslexia, these studies support the idea that the

most commonly observed functional and structural brain

differences characterizing dyslexia are present before sig-

nificant reading experience and therefore are more likely

causes rather than consequences of dyslexia.

Advances in understanding the brain basis of
aspects of dyslexia
Brain basis of phonological awareness (PA) deficits

Impaired PA in dyslexia could reflect either a deficit in

representing phonetic sounds and/or a deficit in access to and

manipulation of those sounds (e.g., for mapping phonemes

to print). Previously, a review of behavioral studies of

dyslexia concluded that phonetic representations are

intact, but access to those representations may be

impaired [41]. Recently, a neuroimaging study with

adults found that phonetic representations, as measured

by multivoxel pattern analysis of activations in bilateral

auditory cortices, were intact in dyslexia, but that func-

tional and structural (DTI) connectivity between audi-

tory cortices and left inferior frontal gyrus was reduced

[42��]. These findings favor the interpretation of dyslexia

as being characterized by weakness in access to otherwise
Current Opinion in Neurobiology 2015, 30:73–78
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intact phonetic representations. Consistent with this con-

clusion is the finding that children with dyslexia exhibited

reduced prefrontal activation when engaging in an audi-

tory PA task, but no difference in temporal-lobe acti-

vation, as compared with both age-matched children and

ability-matched children [43].

Brain basis of rapid automatized naming (RAN) deficits

RAN has been partially dissociated from PA as a skill

essential for learning to read [12,13], but now there is

evidence for a neurobiological distinction between the

two skills. A large structural MRI study of typical adult

readers of Chinese found that phonological decoding

ability was related to gray matter volume in left perisyl-

vian cortex, whereas naming speed was related to volume

in a more distributed network across all four lobes [44��].
Further, functional activation to a PA task differed among

groups of children with PA and RAN deficits, as predicted

by the double deficit hypothesis. Activation in left inferior

parietal lobule showed a gradient associated with PA

ability, whereas activation in right cerebellar lobule VI

showed a gradient with RAN ability [45].

Brain basis of reading fluency deficits

For older children with dyslexia who must read longer

texts, slow reading is a major problem. Both the psycho-

logical and brain bases of reduced fluency for connected

text, such as sentences and paragraphs, have been poorly

understood relative to the many studies focusing on

single-word reading. Two studies, however, examined

reading fluency directly in dyslexia during fMRI by

presenting sentences word-by-word at varying rates and

testing comprehension, but the two studies reported

disparate results [46,47]. Both studies reported that more

rapid reading resulted in greater activation of left fusiform

cortex in the VWFA region. One study reported that

children with dyslexia exhibited reduced activation

related to fluency exclusively in left fusiform gyrus

despite no significant differences in comprehension

accuracy [46]. The other study reported that adults with

dyslexia exhibited disproportionately worse comprehen-

sion accuracy and lesser activation in left prefrontal and

superior temporal regions as a function of reading speed,

but found no group difference in the VWFA region [47].

Although the populations and outcomes of the two stu-

dies differed, they have initiated the analysis of the brain

basis of impaired reading fluency in dyslexia.

Brain basis of basic perceptual processes

Neuroimaging findings have reported neural correlates of

atypical basic perceptual processes in dyslexia. Successful

parsing of the speech signal depends on the ability of left

auditorycortextoselectivelyamplifyphonemic information

in the 30 Hz (low gamma) range [48]. MEG revealed

reduced entrainment, or synchronization of neural firing,

to the 30 Hz frequency range in dyslexia, as well as reduced

left-hemisphere specialization for such oscillations [49,50�].
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These differences may impede the efficient transfer of

acoustic information into more abstract phonemic repres-

entations. Individuals with dyslexia also exhibited reduced

neuralentrainment in response to linguistic stimuli [51,52�],
differences in EEG signals that reflect integration of audi-

tory and visual stimuli [53], and greater variability of audi-

tory brainstem responses to speech sounds [54].

An advantage of understanding dyslexia in terms of basic

perceptual processes is that the neural mechanisms of

those processes can be studied in animals. Animal research

has linked dyslexia-associated genes such as KIAA0319

with atypical neural migration [55] and impaired speech

sound discrimination [55,56], suggesting that the mech-

anism by which cortical abnormalities result in behavioral

deficits is through the disruption of synchronous firing in

response to oral language [57]. In humans, variation in

KIAA0319 and two other dyslexia susceptibility genes has

been associated with variation in left-hemisphere white

matter and reading skill [58]. Such research may integrate

findings from the genetic, cellular, cognitive, and beha-

vioral levels in understanding the core deficits in dyslexia.

Conclusion
Progress in understanding the cognitive neuroscience of

dyslexia may be approaching translation from basic

research to intervention for children who will struggle

to read. Remediation is known to be most effective in

beginning readers, so early and accurate identification

may promote effective intervention for children before

they experience prolonged reading failure. Neuroimaging

has identified biomarkers that enhance or outperform

current behavioral measures in predicting long-term read-

ing outcomes [59,60�,61,62,63�]. With further progress in

understanding specific components of dyslexia (e.g., PA,

RAN, fluency) it may also become possible to develop

personalized interventions that target the specific pat-

terns of weaknesses that undermine learning to read in

individual children.
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33. Leppänen PHT, Hämäläinen JA, Guttorm TK, Eklund KM,
Salminen H, Tanskanen A, Torppa M, Puolakanaho A,
Richardson U, Pennala R, Lyytinen H: Infant brain responses
associated with reading-related skills before school and at
school age. Neurophysiol Clin 2012, 42:35-41.

34. van Zuijen TL, Plakas A, Maassen BAM, Maurits NM, van der Leij A:
Infant ERPs separate children at risk of dyslexia who become
good readers from those who become poor readers. Dev Sci
2013, 16:554-563.

35. Molfese D: Predicting dyslexia at 8 years of age using neonatal
brain responses. Brain Lang 2000, 72:238-245.

36.
�

Neuhoff N, Bruder J, Bartling J, Warnke A, Remschmidt H, Müller-
Myhsok B, Schulte-Körne G: Evidence for the late MMN as a
neurophysiological endophenotype for dyslexia. PLoS ONE
2012, 7:e34909.

The authors studied children with dyslexia and their unaffected siblings in
order to examine genetic effects on the amplitude of the mismatch
negativity ERP component. This approach breaks ground on character-
izing the variety of phenotypes in dyslexia based on new insights into their
biological bases.

37.
��

Raschle NM, Zuk J, Gaab N: Functional characteristics of
developmental dyslexia in left-hemispheric posterior brain
regions predate reading onset. Proc Natl Acad Sci USA 2012,
109:2156-2161.

This is the first study showing that there are anatomically specific
differences in brain function in pre-reading kindergartners at familial risk
for dyslexia even before formal reading instruction in school.

38. Raschle NM, Chang M, Gaab N: Structural brain alterations
associated with dyslexia predate reading onset. Neuroimage
2011, 57:742-749.
Current Opinion in Neurobiology 2015, 30:73–78

http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0015
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0015
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0015
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0020
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0020
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0025
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0025
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0025
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0030
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0030
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0030
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0035
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0035
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0040
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0040
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0045
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0045
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0045
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0045
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0050
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0050
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0050
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0050
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0055
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0055
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0055
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0060
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0060
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0060
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0065
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0065
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0070
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0070
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0070
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0075
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0075
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0075
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0080
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0080
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0085
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0085
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0085
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0090
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0090
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0090
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0095
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0095
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0095
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0100
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0100
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0100
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0105
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0105
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0105
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0110
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0110
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0115
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0115
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0115
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0115
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0120
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0120
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0125
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0125
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0125
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0130
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0130
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0130
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0130
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0135
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0135
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0135
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0135
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0135
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0140
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0140
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0140
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0140
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0145
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0145
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0145
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0150
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0150
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0155
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0155
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0155
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0160
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0160
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0165
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0165
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0165
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0165
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0165
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0170
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0170
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0170
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0170
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0175
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0175
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0180
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0180
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0180
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0180
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0185
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0185
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0185
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0185
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0190
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0190
http://refhub.elsevier.com/S0959-4388(14)00195-0/sbref0190


78 Neuropsychiatry
39. Black JM, Tanaka H, Stanley L, Nagamine M, Zakerani N,
Thurston A, Kesler S, Hulme C, Lyytinen H, Glover GH et al.:
Maternal history of reading difficulty is associated with
reduced language-related gray matter in beginning readers.
Neuroimage 2012, 59:3021-3032.

40. Saygin ZM, Norton ES, Osher DE, Beach SD, Cyr AB, Ozernov-
Palchik O, Yendiki A, Fischl B, Gaab N, Gabrieli JDE: Tracking the
roots of reading ability: white matter volume and integrity
correlate with phonological awareness in prereading and
early-reading kindergarten children. J Neurosci 2013,
33:13251-13258.

41. Ramus F, Szenkovits G: What phonological deficit? Q J Exp
Psychol 2008, 61:129-141.

42.
��

Boets B, Op de Beeck HP, Vandermosten M, Scott SK,
Gillebert CR, Mantini D, Bulthé J, Sunaert S, Wouters J,
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